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Lecture 5

Quicksort
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Quicksort

• Quicksort pros [advantage]:

– Sorts in place

– Sorts O(n lg n) in the average case

– Very efficient in practice , it’s quick

• Quicksort cons [disadvantage]:

– Sorts O(n2) in the worst case

– And the worst case doesn’t happen often … sorted



Quicksort

• Another divide-and-conquer algorithm:

• Divide:  A[p…r] is partitioned (rearranged) into two 
nonempty subarrays A[p…q-1] and A[q+1…r] s.t. 
each element of A[p…q-1] is less than or equal to 
each element of A[q+1…r]. Index q is computed here, 
called pivot.

• Conquer:  two subarrays are sorted by recursive calls 
to quicksort. 

• Combine: unlike merge sort, no work needed since 
the subarrays are sorted in place already.



Quicksort

• The basic algorithm to sort an array A consists of the following four 
easy steps:

– If the number of elements in A is 0 or 1, then return
– Pick any element v in A.  This is called the pivot

– Partition A-{v} (the remaining elements in A) into two disjoint 
groups:

• A1 = {x  A-{v} | x ≤ v}, and

• A2 = {x  A-{v} | x ≥ v}
– return 

• { quicksort(A1) followed by v followed by
quicksort(A2)}



Quicksort
• Small instance has n ≤ 1

– Every small instance is a sorted instance

• To sort a large instance:
– select a pivot element from out of the n elements

• Partition the n elements into 3 groups left, middle and 
right
– The middle group contains only the pivot element
– All elements in the left group are ≤ pivot
– All elements in the right group are ≥ pivot

• Sort left and right groups recursively

• Answer is sorted left group, followed by middle group 
followed by sorted right group



Quicksort Code
P: first element

r: last element

Quicksort(A, p, r)

{

if (p < r)

{

q = Partition(A, p, r)

Quicksort(A, p , q-1)

Quicksort(A, q+1 , r)

}

}

• Initial call is Quicksort(A, 1, n), where n in the length of A



Partition

• Clearly, all the action takes place in the 
partition() function

– Rearranges the subarray in place

– End result: 

• Two subarrays

• All values in first subarray  all values in second

– Returns the index of the “pivot” element 

separating the two subarrays



Partition Code
Partition(A, p, r)

{

x = A[r] // x is pivot

i = p - 1

for j = p to r – 1

{

do if A[j] <= x

then

{

i = i + 1

exchange A[i]  A[j]

}

}

exchange A[i+1]  A[r] 

return i+1

}

partition() runs in O(n) time



Partition Example

A = {2, 8, 7, 1, 3, 5, 6, 4}
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Partition Example Explanation

• Red shaded elements are in the first partition 
with values   x (pivot)

• Gray shaded elements are in the second 
partition with values  x (pivot)

• The unshaded elements have no yet been put in 
one of the first two partitions

• The final white element is the pivot



Choice Of Pivot
Three ways to choose the pivot:

• Pivot is rightmost element in list that is to be sorted

– When sorting A[6:20], use A[20] as the pivot

– Textbook implementation does this

• Randomly select one of the elements to be sorted as 

the pivot

– When sorting A[6:20], generate a random number r in 

the range [6, 20]

– Use A[r] as the pivot



Worst Case Partitioning

• The running time of quicksort depends on whether the partitioning is 
balanced or not.

• (n) time to partition an array of n elements

• Let T(n) be the time needed to sort n elements

• T(0) = T(1) = c, where c is a constant

• When n > 1, 
– T(n) = T(|left|) + T(|right|) + (n)

• T(n) is maximum (worst-case) when either |left| = 0 or |right| = 0 
following each partitioning



Worst Case Partitioning



Worst Case Partitioning

• Worst-Case Performance (unbalanced):

– T(n) = T(1) + T(n-1) + (n)

• partitioning takes (n)

= [2 + 3 + 4 + …+ n-1 + n ]+ n = 

= [k = 2 to n k ]+ n = (n2)

• This occurs when 

– the input is completely sorted

• or when 

– the pivot is always the smallest (largest) element
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Best Case Partition

• When the partitioning procedure produces two regions of 

size n/2, we get the a balanced partition with best case

performance:

– T(n) = 2T(n/2) + (n) = (n lg n)

• Average complexity is also (n lg n)



Best Case Partitioning



Average Case

• Assuming random input, average-case running time is 

much closer to (n lg n) than (n2)

• First, a more intuitive explanation/example:

– Suppose that partition() always produces a 9-to-1 

proportional split.  This looks quite unbalanced!

– The recurrence is thus:

T(n) = T(9n/10) + T(n/10) + (n) = (n lg n)?

[Using recursion tree method to solve]



Average Case

( ) ( /10) (9 /10) ( ) ( log )!T n T n T n n n n   

log2n = log10n/log102



Average Case

• Every level of the tree has cost cn, until a boundary condition 
is reached at depth log10 n = Θ( lgn), and then the levels have 
cost at most cn. 

• The recursion terminates at depth log10/9 n= Θ(lg n).

• The total cost of quicksort is therefore O(n lg n).



Average Case

• What happens if we bad-split root node, then good-split

the resulting size (n-1) node?

– We end up with three subarrays, size 

• 1, (n-1)/2, (n-1)/2

– Combined cost of splits = n + n-1 = 2n -1 = (n)   
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Intuition for the Average Case

• Suppose, we alternate lucky and unlucky cases to get 

an average behavior

( ) 2 ( / 2) ( )  lucky

( ) ( 1) ( )    unlucky

we consequently get
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The combination of good and bad splits would result in

T(n) = O (n lg n), but with slightly larger constant hidden by 

the O-notation.



Review: Analyzing Quicksort

• What will be the worst case for the algorithm?

– Partition is always unbalanced

• What will be the best case for the algorithm?

– Partition is balanced



Summary: Quicksort

• In worst-case, efficiency is (n2)

– But easy to avoid the worst-case

• On average, efficiency is (n lg n)

• Better space-complexity than mergesort.

• In practice, runs fast and widely used


