Algorithms And Programming I

Lecture 5
 Quicksort

Quick Sort

Partition set into two using randomly chosen pivot

Quick Sort

sort the first half.

sort the second half.

Quick Sort

Glue pieces together.

$$
14,23,25,30,31,52,62,79,88,98
$$

Quicksort

- Quicksort pros [advantage]:
- Sorts in place
- Sorts $O(n \lg n)$ in the average case
- Very efficient in practice , it's quick
- Quicksort cons [disadvantage]:
- Sorts $O\left(n^{2}\right)$ in the worst case
- And the worst case doesn't happen often ... sorted

Quicksort

- Another divide-and-conquer algorithm:
- Divide: $A[p . . r]$ is partitioned (rearranged) into two nonempty subarrays $A[p \ldots q-1]$ and $A[q+1 \ldots r]$ s.t. each element of $A[p \ldots q-1]$ is less than or equal to each element of $A[q+1 \ldots r]$. Index q is computed here, called pivot.
- Conquer: two subarrays are sorted by recursive calls to quicksort.
- Combine: unlike merge sort, no work needed since the subarrays are sorted in place already.

Quicksort

- The basic algorithm to sort an array A consists of the following four easy steps:
- If the number of elements in A is 0 or 1 , then return
- Pick any element v in A. This is called the pivot
- Partition $A-\{\boldsymbol{v}\}$ (the remaining elements in A) into two disjoint groups:
- $A_{1}=\{\boldsymbol{x} \in A-\{\boldsymbol{v}\} \mid \boldsymbol{x} \leq \boldsymbol{v}\}$, and
- $A_{2}=\{\boldsymbol{x} \in A-\{\boldsymbol{v}\} \mid \boldsymbol{x} \geq \boldsymbol{v}\}$
- return
- \{ quicksort $\left(A_{1}\right)$ followed by v followed by quicksort $\left.\left(A_{2}\right)\right\}$

Quicksort

- Small instance has $n \leq 1$
- Every small instance is a sorted instance
- To sort a large instance:
- select a pivot element from out of the \boldsymbol{n} elements
- Partition the \boldsymbol{n} elements into 3 groups left, middle and right
- The middle group contains only the pivot element
- All elements in the left group are \leq pivot
- All elements in the right group are \geq pivot
- Sort left and right groups recursively
- Answer is sorted left group, followed by middle group followed by sorted right group

Quicksort Code

```
P: first element
r: last element
Quicksort(A, p, r)
{
    if (p < r)
    {
        q = Partition(A, P, r)
        Quicksort(A, p , q-1)
        Quicksort(A, q+1 , r)
    }
}
```

- Initial call is Quicksort $(A, 1, n)$, where n in the length of A

Partition

- Clearly, all the action takes place in the partition() function
- Rearranges the subarray in place
- End result:
- Two subarrays
- All values in first subarray \leq all values in second
- Returns the index of the "pivot" element separating the two subarrays

Partition Code

```
Partition(A, p, r)
\{
\(\mathbf{x}=\mathrm{A}[\mathrm{r}] \quad / / \mathbf{x}\) is pivot
\(\mathrm{i}=\mathrm{p}-1\)
for \(j=p\) to \(r-1\)
\{
do if \(A[j]<=x\)
        then
        \{
                                \(i=i+1\)
                                exchange \(A[i] \leftrightarrow A[j]\)
        \}
\}
                                    partition() runs in O(n) time
exchange \(A[i+1] \leftrightarrow A[r]\)
return i+1

\section*{Partition Example}
\[
A=\{2,8,7,1,3,5,6,4\}
\]

\begin{tabular}{lll|l|llll|}
\(p\) & & \(i\) & & & & \(r\) \\
2 & 1 & 3 & 4 & 7 & 5 & 6 & 8 \\
\hline
\end{tabular}

\section*{Partition Example Explanation}
- Red shaded elements are in the first partition with values \(\leq x\)
(pivot)
- Gray shaded elements are in the second partition with values \(\geq x\)
(pivot)
- The unshaded elements have no yet been put in one of the first two partitions
- The final white element is the pivot

\section*{Choice Of Pivot}

Three ways to choose the pivot:
- Pivot is rightmost element in list that is to be sorted
- When sorting \(A[6: 20]\), use \(A[20]\) as the pivot
- Textbook implementation does this
- Randomly select one of the elements to be sorted as the pivot
- When sorting A[6:20], generate a random number \(r\) in the range [6, 20]
- Use \(A[r]\) as the pivot

\section*{Worst Case Partitioning}
- The running time of quicksort depends on whether the partitioning is balanced or not.
- \(\Theta(n)\) time to partition an array of \(n\) elements
- Let \(T(n)\) be the time needed to sort \(n\) elements
- \(T(0)=T(1)=c\), where \(c\) is a constant
- When \(n>1\),
\(-T(n)=T(\mid\) left \(\mid)+T(\mid\) right \(\mid)+\Theta(n)\)
- \(T(n)\) is maximum (worst-case) when either |left| \(=0\) or \(\mid\) right \(\mid=0\) following each partitioning

\section*{Worst Case Partitioning}


Figure 8.2 A recursion tree for Quicksort in which the Partition procedure always puts only a single element on one side of the partition (the worst case). The resulting running time is \(\Theta\left(n^{2}\right)\).

\section*{Worst Case Partitioning}
- Worst-Case Performance (unbalanced):
\[
-T(n)=T(1)+T(n-1)+\Theta(n)
\]
- partitioning takes \(\Theta(n)\)
\[
\begin{aligned}
& =[2+3+4+\ldots+n-1+n]+n= \\
& =\left[\sum_{k=2 \text { to } n k]+n=\Theta\left(n^{2}\right)} \quad \sum_{k=1}^{n} k=1+2+\ldots+n=n(n+1) / 2=\Theta\left(n^{2}\right)\right.
\end{aligned}
\]
- This occurs when
- the input is completely sorted
- or when
- the pivot is always the smallest (largest) element

\section*{Best Case Partition}
- When the partitioning procedure produces two regions of size \(n / 2\), we get the a balanced partition with best case performance:
\(-T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \lg n)\)
- Average complexity is also \(\Theta(n \lg n)\)

\section*{Best Case Partitioning}


Figure 8.3 A recursion tree for Quicksort in which Partition always balances the two sides of the partition equally (the best case). The resulting running time is \(\Theta(n \lg n)\).

\section*{Average Case}
- Assuming random input, average-case running time is much closer to \(\Theta(n \lg n)\) than \(\Theta\left(n^{2}\right)\)
- First, a more intuitive explanation/example:
- Suppose that partition() always produces a 9-to-1 proportional split. This looks quite unbalanced!
- The recurrence is thus:
\(T(n)=T(9 n / 10)+T(n / 10)+\Theta(n)=\Theta(n \lg n) ?\)
[Using recursion tree method to solve]

\section*{Average Case}
\[
T(n)=T(n / 10)+T(9 n / 10)+\Theta(n)=\Theta(n \log n)!
\]

\(\log _{2} n=\log _{10} n / \log _{10} 2\)

\section*{Average Case}
- Every level of the tree has cost cn, until a boundary condition is reached at depth \(\log _{10} n=\Theta(\operatorname{lgn})\), and then the levels have cost at most cn.
- The recursion terminates at depth \(\log _{10 / 9} n=\Theta(\lg n)\).
- The total cost of quicksort is therefore \(O(n \lg n)\).

\section*{Average Case}
- What happens if we bad-split root node, then good-split the resulting size ( \(n-1\) ) node?
- We end up with three subarrays, size
- \(1,(n-1) / 2,(n-1) / 2\)
- Combined cost of splits \(=n+n-1=2 n-1=\Theta(n)\)


\section*{Intuition for the Average Case}
- Suppose, we alternate lucky and unlucky cases to get an average behavior
\[
\begin{aligned}
& L(n)=2 U(n / 2)+\Theta(n) \text { lucky } \\
& U(n)=L(n-1)+\Theta(n) \text { unlucky } \\
& \text { we consequently get } \\
& \begin{aligned}
L(n) & =2(L(n / 2-1)+\Theta(n / 2))+\Theta(n) \\
\quad= & 2 L(n / 2-1)+\Theta(n) \\
\quad= & \Theta(n \log n)
\end{aligned}
\end{aligned}
\]

The combination of good and bad splits would result in \(T(n)=0(n \lg n)\), but with slightly larger constant hidden by the O-notation.

\section*{Review: Analyzing Quicksort}
- What will be the worst case for the algorithm?
- Partition is always unbalanced
- What will be the best case for the algorithm?
- Partition is balanced

\section*{Summary: Quicksort}
- In worst-case, efficiency is \(\Theta\left(\mathrm{n}^{2}\right)\)
- But easy to avoid the worst-case
- On average, efficiency is \(\Theta(\mathrm{n} \lg \mathrm{n})\)
- Better space-complexity than mergesort.
- In practice, runs fast and widely used```

