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Lecture 5
Quicksort



Quick Sort

Partition set into two using
randomly chosen pivot
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Quicksort

« Quicksort pros [advantage]:
— Sorts in place
— Sorts O(n Ig n) in the average case
— Very efficient in practice , it's quick

* Quicksort cons [disadvantage]:
— Sorts O(n?) in the worst case
— And the worst case doesn’t happen often ... sorted



Quicksort

Another divide-and-conquer algorithm:

Divide: Alp...r] is partitioned (rearranged) into two
nonempty subarrays A[p...g-1] and A[g+1...r] s.t.
each element of A[p...g-1] is less than or equal to
each element of A[g+1...r]. Index q is computed here,
called pivot.

Conquer: two subarrays are sorted by recursive calls
to quicksort.

Combine: unlike merge sort, no work needed since
the subarrays are sorted in place already.



Quicksort

The basic algorithm to sort an array A consists of the following four
easy steps:

— If the number of elements in A is O or 1, then return
— Pick any element v in A. This is called the pivot

— Partition A-{v} (the remaining elements in A) into two disjoint
groups:

« A ={x € A{v}| x =V}, and
« A, ={Xx e A{v}|x =2V}
— return

. { quicksort(A,) followed by v  followed by
quicksort(A,)}



Quicksort

Small instance hasn<1
— Every small instance Is a sorted instance

To sort a large instance:
— select a pivot element from out of the n elements

Partition the n elements into 3 groups left, middle and
right

— The middle group contains only the pivot element
— All elements In the left group are < pivot

— All elements In the right group are = pivot

Sort left and right groups recursively

Answer is sorted left group, followed by middle group
followed by sorted right group



Quicksort Code

P: first element
r: last element
Quicksort (A, p, r)
{
if (p < r)
{
q = Partition(A, p, r)
Quicksort(A, p , g-1)
Quicksort (A, g+l , I)

 Initial call is Quicksort(A, 1, n), where n in the length of A



Partition

Clearly, all the action takes place in the
partition () function

— Rearranges the subarray in place

— End result:
* Two subarrays
 All values in first subarray < all values in second

— Returns the index of the “pivot” element
separating the two subarrays



Partition Code

Partition(A, p, r)
{
x = A[r] // x is pivot
i=p-1
for j=p tor -1
{
do if A[]j] <= x
then
{
i=1i+1
exchange A[i] & A[7j]
}
} partition () runsin O(n) time
exchange A[i+l] & AJr]

return i+l



Partition Example
A={2,8,7,1,3,5,6, 4}




Partition Example Explanation

* Red shaded elements are in the first partition
with values < x (pivot)

shaded elements are Iin the second
partition with values > x (pivot)

 The unshaded elements have no yet been put In
one of the first two partitions

* The final white element is the pivot



Choice Of Pivot

Three ways to choose the pivot:

* Pivotisrightmost element in list that is to be sorted
— When sorting A[6:20], use A[20] as the pivot
— Textbook implementation does this

 Randomly select one of the elements to be sorted as
the pivot

— When sorting A[6:20], generate a random number r in
the range [6, 20]

— Use A[r] as the pivot



Worst Case Partitioning

The running time of quicksort depends on whether the partitioning is
balanced or not.

®(n) time to partition an array of n elements
Let T(n) be the time needed to sort n elements
T(0) =T(1) = c, where c is a constant

Whenn > 1,
— T(n) = T(|left]) + T(Jright]) + ®(n)

T(n) Is maximum (worst-case) when either |left| = 0 or |right| = 0
following each partitioning




Worst Case Partitioning
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Figure 8.2 A recursion tree for QUICKSORT in which the PARTITION procedure
always puts only a single element on one side of the partition (the worst case). The

resulting running time is ©(n?).



Worst Case Partitioning

* Worst-Case Performance (unbalanced):
—T(n) =T() + T(n-1) + ©(n)
* partitioning takes ®(n)
=[2+3+4+ .. +n-1l+nj]+n=
= Rkz210n K]+ Nn=0(n?) Z k=1+2+..+n=n(n+1)/2=0(n?)

* This occurs when
— the input is completely sorted

« or when
— the pivot is always the smallest (largest) element



Best Case Partition

* When the partitioning procedure produces two regions of

size n/2, we get the a balanced partition with best case
performance:

— T(n) = 2T(n/2) + ®(n) = B(n Ig n)

« Average complexity is also ®(n Ig n)



Best Case Partitioning
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Figure 8.3 A recursion tree for QUICKSORT in which PARTITION always balances
the two sides of the partition equally (the best case). The resulting running time

is ©(nlgn).



Average Case

« Assuming random input, average-case running time is
much closer to ®(n Ig n) than ®(n?)

* First, a more intuitive explanation/example:

— Suppose that partition() always produces a 9-to-1
proportional split. This looks quite unbalanced!

— The recurrence is thus:
T(n) = T(9n/10) + T(n/10) + ®(n) = O(nlg n)?

[Using recursion tree method to solve]



T(nN)=T(n/10)+T(9n/10) + ®(n) =B(nlogn)!
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Average Case

Every level of the tree has cost cn, until a boundary condition
IS reached at depth log,,n = ®( 1gn), and then the levels have
cost at most cn.

The recursion terminates at depth log,y,, n= ®(Ig n).

The total cost of quicksort is therefore O(n Ig n).



Average Case

« What happens if we bad-split root node, then good-split
the resulting size (n-1) node?
— We end up with three subarrays, size
* 1, (n-1)/2, (n-1)/2
— Combined cost of splits =n +n-1=2n -1 = ®(n)
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Intuition for the Average Case

e Suppose, we alternate lucky and unlucky cases to get
an average behavior

L(n)=2U(n/2)+®(n) lucky

U(n)=L(n-1)+®(n) unlucky

we consequently get

L(n) =2(L(n/2-1)+©(n/2)) + O(n)
= 2L(n/2-1)+O(n)
= ©®(nlogn)

The combination of good and bad splits would result in

T(n) =0 (n lg n), but with slightly larger constant hidden by
the O-notation.



Review: Analyzing Quicksort

« What will be the worst case for the algorithm?
— Partition is always unbalanced

« What will be the best case for the algorithm?
— Partition is balanced



Summary: Quicksort

In worst-case, efficiency is ©(n?)
— But easy to avoid the worst-case

On average, efficiency is ©(n Ig n)
Better space-complexity than mergesort.

In practice, runs fast and widely used



