
Algorithms And Programming I

Lecture 5

Quicksort

Quick Sort

88
14

9825
62

52

79

30
23

31

Partition set into two using

randomly chosen pivot

14

25
30

2331

88
98

62
79

≤ 52 ≤

Quick Sort

14

25
30

2331

88
98

62
79

≤ 52 ≤

14,23,25,30,31

sort the first half.

62,79,98,88

sort the second half.

Quick Sort

14,23,25,30,31

62,79,88,98

52

Glue pieces together.

14,23,25,30,31,52,62,79,88,98

Quicksort

• Quicksort pros [advantage]:

– Sorts in place

– Sorts O(n lg n) in the average case

– Very efficient in practice , it’s quick

• Quicksort cons [disadvantage]:

– Sorts O(n2) in the worst case

– And the worst case doesn’t happen often … sorted

Quicksort

• Another divide-and-conquer algorithm:

• Divide: A[p…r] is partitioned (rearranged) into two
nonempty subarrays A[p…q-1] and A[q+1…r] s.t.
each element of A[p…q-1] is less than or equal to
each element of A[q+1…r]. Index q is computed here,
called pivot.

• Conquer: two subarrays are sorted by recursive calls
to quicksort.

• Combine: unlike merge sort, no work needed since
the subarrays are sorted in place already.

Quicksort

• The basic algorithm to sort an array A consists of the following four
easy steps:

– If the number of elements in A is 0 or 1, then return
– Pick any element v in A. This is called the pivot

– Partition A-{v} (the remaining elements in A) into two disjoint
groups:

• A1 = {x  A-{v} | x ≤ v}, and

• A2 = {x  A-{v} | x ≥ v}
– return

• { quicksort(A1) followed by v followed by
quicksort(A2)}

Quicksort
• Small instance has n ≤ 1

– Every small instance is a sorted instance

• To sort a large instance:
– select a pivot element from out of the n elements

• Partition the n elements into 3 groups left, middle and
right
– The middle group contains only the pivot element
– All elements in the left group are ≤ pivot
– All elements in the right group are ≥ pivot

• Sort left and right groups recursively

• Answer is sorted left group, followed by middle group
followed by sorted right group

Quicksort Code
P: first element

r: last element

Quicksort(A, p, r)

{

if (p < r)

{

q = Partition(A, p, r)

Quicksort(A, p , q-1)

Quicksort(A, q+1 , r)

}

}

• Initial call is Quicksort(A, 1, n), where n in the length of A

Partition

• Clearly, all the action takes place in the
partition() function

– Rearranges the subarray in place

– End result:

• Two subarrays

• All values in first subarray  all values in second

– Returns the index of the “pivot” element

separating the two subarrays

Partition Code
Partition(A, p, r)

{

x = A[r] // x is pivot

i = p - 1

for j = p to r – 1

{

do if A[j] <= x

then

{

i = i + 1

exchange A[i]  A[j]

}

}

exchange A[i+1]  A[r]

return i+1

}

partition() runs in O(n) time

Partition Example

A = {2, 8, 7, 1, 3, 5, 6, 4}

2 8 7 1 3 5 6 4

rp ji

2 8 7 1 3 5 6 4

rp i j

rp i j

2 8 7 1 3 5 6 4

rp i j

82 7 1 3 5 6 4

rp j

12 7 8 3 5 6 4

i rp j

12 3 8 7 5 6 4

i

rp j

12 3 8 7 5 6 4

i rp

12 3 8 7 5 6 4

i

rp

12 3 4 7 5 6 8

i

2

2

2 2

2 2

2

1

1 3

3 1 3

1 3

Partition Example Explanation

• Red shaded elements are in the first partition
with values  x (pivot)

• Gray shaded elements are in the second
partition with values  x (pivot)

• The unshaded elements have no yet been put in
one of the first two partitions

• The final white element is the pivot

Choice Of Pivot
Three ways to choose the pivot:

• Pivot is rightmost element in list that is to be sorted

– When sorting A[6:20], use A[20] as the pivot

– Textbook implementation does this

• Randomly select one of the elements to be sorted as

the pivot

– When sorting A[6:20], generate a random number r in

the range [6, 20]

– Use A[r] as the pivot

Worst Case Partitioning

• The running time of quicksort depends on whether the partitioning is
balanced or not.

• (n) time to partition an array of n elements

• Let T(n) be the time needed to sort n elements

• T(0) = T(1) = c, where c is a constant

• When n > 1,
– T(n) = T(|left|) + T(|right|) + (n)

• T(n) is maximum (worst-case) when either |left| = 0 or |right| = 0
following each partitioning

Worst Case Partitioning

Worst Case Partitioning

• Worst-Case Performance (unbalanced):

– T(n) = T(1) + T(n-1) + (n)

• partitioning takes (n)

= [2 + 3 + 4 + …+ n-1 + n]+ n =

= [k = 2 to n k]+ n = (n2)

• This occurs when

– the input is completely sorted

• or when

– the pivot is always the smallest (largest) element

)(2/)1(...21 2

1

nnnnk
n

k




Best Case Partition

• When the partitioning procedure produces two regions of

size n/2, we get the a balanced partition with best case

performance:

– T(n) = 2T(n/2) + (n) = (n lg n)

• Average complexity is also (n lg n)

Best Case Partitioning

Average Case

• Assuming random input, average-case running time is

much closer to (n lg n) than (n2)

• First, a more intuitive explanation/example:

– Suppose that partition() always produces a 9-to-1

proportional split. This looks quite unbalanced!

– The recurrence is thus:

T(n) = T(9n/10) + T(n/10) + (n) = (n lg n)?

[Using recursion tree method to solve]

Average Case

() (/10) (9 /10) () (log)!T n T n T n n n n   

log2n = log10n/log102

Average Case

• Every level of the tree has cost cn, until a boundary condition
is reached at depth log10 n = Θ(lgn), and then the levels have
cost at most cn.

• The recursion terminates at depth log10/9 n= Θ(lg n).

• The total cost of quicksort is therefore O(n lg n).

Average Case

• What happens if we bad-split root node, then good-split

the resulting size (n-1) node?

– We end up with three subarrays, size

• 1, (n-1)/2, (n-1)/2

– Combined cost of splits = n + n-1 = 2n -1 = (n)

n

1 n-1

(n-1)/2 (n-1)/2

()n

(n-1)/2 (n-1)/2

n ()n
)1( n

Intuition for the Average Case

• Suppose, we alternate lucky and unlucky cases to get

an average behavior

() 2 (/ 2) () lucky

() (1) () unlucky

we consequently get

() 2((/ 2 1) (/ 2)) ()

2 (/ 2 1) ()

(log)

L n U n n

U n L n n

L n L n n n

L n n

n n

 

  

   

  

 

The combination of good and bad splits would result in

T(n) = O (n lg n), but with slightly larger constant hidden by

the O-notation.

Review: Analyzing Quicksort

• What will be the worst case for the algorithm?

– Partition is always unbalanced

• What will be the best case for the algorithm?

– Partition is balanced

Summary: Quicksort

• In worst-case, efficiency is (n2)

– But easy to avoid the worst-case

• On average, efficiency is (n lg n)

• Better space-complexity than mergesort.

• In practice, runs fast and widely used

